Math 113: Trigonometric Identities
Chapter 6, 7, 8, 9

Many of the trigonometric identities can be derived in succession from the identities:

\[\sin(-x) = -\sin x, \]
(1)
\[\cos(-x) = \cos x, \]
(2)
\[\sin(x + y) = \sin x \cos y + \sin y \cos x, \]
(3)
\[\cos(x + y) = \cos x \cos y - \sin x \sin y. \]
(4)

The first and second identities indicate that \(\sin \) and \(\cos \) are odd and even functions, respectively.

Suppose that \(y = -w \), then (3) simplifies to

\[\sin(x + (-w)) = \sin x \cos(-w) + \sin(-w) \cos x \]
by (3)
\[= \sin x \cos w - \sin w \cos x \]
by (1) and (2)

Since \(w \) is an arbitrary label, then \(y \) will do as well. Hence,

\[\sin(x - y) = \sin x \cos y - \sin y \cos x \]
(5)

Similarly, equation (4) simplifies as

\[\cos(x - y) = \cos x \cos y + \sin x \sin y \]
(6)

The Double Angle identities can be derived from equations (3) and (4). Suppose \(x = y \), then (3) simplifies as

\[\sin(x + x) = \sin x \cos x + \sin x \cos x. \]
Hence,

\[\sin(2x) = 2 \sin x \cos x. \]
(7)

Similarly,

\[\cos(2x) = \cos^2 x - \sin^2 x. \]
(8)

The first of the Pythagorean identities can be found by setting \(x = y \) in (6). Hence,

\[\cos(x - x) = \sin x \sin x + \cos x \cos x. \]
So,

\[\sin^2 x + \cos^2 x = 1. \]
(9)

Dividing both sides of (9) by \(\cos^2 x \) yields

\[\tan^2 x + 1 = \sec^2 x. \]
(10)

Dividing both sides of (9) by \(\sin^2 x \) yields

\[1 + \cot^2 x = \csc^2 x. \]
(11)

Equations (8) and (9) can generate the Power Reductions formulas. Using \(\cos^2 x = 1 - \sin^2 x \), (8) can be written as

\[\cos(2x) = (1 - \sin^2 x) - \sin^2 x = 1 - 2\sin^2 x. \]
Solving the above equation for $\sin^2 x$ yields

$$\sin^2 x = \frac{1 - \cos(2x)}{2}. \quad (12)$$

Similarly,

$$\cos^2 x = \frac{1 + \cos(2x)}{2}. \quad (13)$$

The product identities can be found using equations (3) through (6). For example, adding (3) and (5) yields

$$\sin(x - y) + \sin(x + y) = \sin x \cos y + \sin y \cos x + \sin x \cos y - \sin x \cos y$$

$$\sin(x - y) + \sin(x + y) = 2 \sin x \cos y.$$

Hence,

$$\sin x \cos y = \frac{1}{2} \left[\sin(x - y) + \sin(x + y) \right]. \quad (14)$$

Similarly,

$$\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right] \text{ and} \quad (15)$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]. \quad (16)$$