These questions are intended to give students in Math 112 some idea of the types of questions which could be asked on an exam. The questions may not cover all of the topics which will be on your exam (and they may cover more topics than are on your exam). The length of your exam may be shorter than this practice exam. **Working these problems is not** a substitute for studying your notes, reading the book, or doing homework problems.

Fill in the Blank

Write the best answer in the spaces provided

1. (2 pts) A function \(y = f(x) \) that is even is symmetric with respect to the _____________.

2. (2 pts) A function \(y = f(x) \) that is odd is symmetric with respect to the _____________.

3. (2 pts) A function \(y = f(x) \) is increasing if it rises as you move from ____________ to ____________.

4. (2 pts each) Write down next to each of the following problems the effect the transformation has on the graph of \(y = f(x) \).

 (a) \(y = f(x) + 5 \)

 (b) \(y = -f(x) \)

 (c) \(y = 5 + 2f(x + 3) \)

 (d) \(y = f(x - 4) \)

 (e) \(y = f(-x) \)
5. (2 pts each) Fill in the blank for the answers for the following limits based on the graph below. Each unit on the graph corresponds to one unit.

(a) \(\lim_{x \to -1} f(x) = \)

(b) \(\lim_{x \to -10^{-}} f(x) = \)

(c) \(\lim_{x \to 17^{+}} f(x) = \)

(d) \(\lim_{x \to 4^{+}} f(x) = \)

(e) \(\lim_{x \to 10^{-}} f(x) = \)

(f) \(\lim_{x \to 17^{-}} f(x) = \)

(g) \(\lim_{x \to 10^{+}} f(x) = \)

(h) \(\lim_{x \to 4} f(x) = \)

(i) \(f(10) = \)

(j) \(f(4) = \)

(k) \(f(17) = \)

(l) At which points is \(f(x) \) continuous?

(m) At which points is \(f(x) \) discontinuous?

(n) At which points is \(f(x) \) only right continuous?

(o) At which points is \(f(x) \) only left continuous?
6. (5 pts) Find an equation for the circle with the center \((-1, 5)\) and radius \(\sqrt{10}\).

7. (5 pts) Using the trigonometric identity \(\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta\), find \(\cos \left(\frac{\pi}{12} \right)\). (Hint: \(\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}\).)
8. (5 pts) Calculate \(\lim_{x \to 0^+} \frac{\sin x}{x} \) by using the sandwich theorem. (Hint: use the inequality that \(x - \frac{x^3}{6} < \sin x < x \) for the interval \(0 < x < \frac{\pi}{2} \)).
9. (5 pts) Compute the following limit:

$$\lim_{x \to 2} \frac{\sqrt{x^2 + 12} - 4}{x - 2}$$

10. (5 pts) Calculate $$\lim_{x \to -1^-} \left(\frac{x^2}{2} - \frac{1}{x} \right)$$.
11. (5 pts) Show that \(\lim_{x \to 0} \frac{\sin 5x}{\sin 4x} = \frac{5}{4} \).
12. (10 pts) Find the equation for the tangent line to the curve $f(x) = 4 - x^2$ at the point $(2, 3)$.
13. (7 pts) Compute the derivative of $f(x) = 2\sqrt{x}$ at the point $x = 4$.
14. (5 pts) Prove \(\lim_{x \to -2} x^2 = 4 \) by using the precise definition of the limit.